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INTRODUCTION

Random space filling problems have been discussed in the literature
in recent years, (for example [1], [3], [4], [5], and [7]). This is
an interesting and usually difficult problem in geometrical probability
which in some cases is motivated by specific problems in physical
chemistry, biology, and other disciplines. Usually one is concerned
with completely covering a fixed region by random regions. However,
the specific method by which the random regions are placed is of central
importance in the resolution of such problems. Because of the complexity
in considering this in any general fashion, an investigator usually
chooses special cases to examine. In this paper we consider some
situations considered previously by other authors, expand on their
analyses, and initiate some new areas-for which some solution is found.

In section 1 of this paper, it is shown that the moments of the
random variable "proportion of the fixed region covered by random
regions" form a monotone decreasing sequence that converges to the
probability of coverage. This is shown to hold in great generality
and exhibits a link between the method of Robbins [5] for calculating
these moments and the random space filling problem.

In Section 2, formulas are developed for the moments of the propor-
tion of a set that is covered by N independent and identically distributed
sets. In Section 3, this is specialized to a particular case of
coverage of a circle by random arcs of random size.

Numerical results are reported in Section 4 for probabilities of
coverage of the circle by. N uniformly placed random arcs of random sizes.

Five arc length distributions are considered and treated by Monte Carlo



and exact methods.

The ordering of coverage probability by decreasing peakedness of arc
length distribution, holding expectation constant, is explored in Section
5., This conjectured ordering is suggested by the results of Section 4

and is shown to hold for a large class of arc length distributions for

which exact calculations are feasible.



15 CONVERGENCE OF THLL MOMENTS E Ak TO PROBABILITY OF COVERAGE

Theorem 1 is presented here in full mathematical generality.
For ordinary applications, the reader may wish to think of 5£' as a
Euclidean space and | as Lebesque measure on.?g . It is in this
context that we agply the theorem in subsequent sections. However,
the full generality is presented here because the theorem was

developed that way. The proof of theorem 1 is essentially the same

in each context.

Let (%E,as, 1) be a measure space. That is, Ga is a o-algebra of
subsets of ¥ and U is a countably additive set function mapping 03 to
[0,#2]. Let X %be a random measurable subset of 9% such that its measure
u(X) is a random variable. Let KX be a fixed measurable subset of 9F
with 0 < p{K) < » . Define A = p(XNK)/u(X) , the proportion of X
that is covered by X . Note that this framework includes the coverage
problem because X may be, for example, the union of N independent and
identically distributed regions., To avoid measurability problems, we
assume W(XNK) is a random variable. The event "X covers K" is defined
to mean W(XNK) = u(K) , that is, if X covers K up to a set of
measure zero. The main result linking the moments of A to the probabil-

ity that ¥ covers K is

Theorem |: FEach moment E A" (m = 1,2,3,...) 1is an upper bound on the
probability that X covers K . The sequence of moments is monotone
decreasing,



and converges to the probability that X covers K :

1im E A™ > P(X covers K)

m>oe

Moreover, this sequence is strictly decreasing except in the trivial

case FP{0O<A<1) =0 . Thus the probability of coverage is determined
in a v=ry simple war from the moments of the ~roportion of K covered.
Proof of Theorem 1l: Observe that A 1is a random variable and thus a

measurable function from some probability space (Q,4,P) to the interval

+
[0,1] and that P(A=1) = P(X covers K). 0 < A < 1 implies A" > A" l; hence

-+ . -
E A" > E A" 1 and the seqguence of moments is monotone decreasing. Next

observe that for each. w & Q , 1lim Am(w) = ICA:l)(w) where I(Azl)
- )

is the indicator function of the set {w: A(w)=1} . Moreover,

IA(w)l_i 1 . Thus by the Lebesgue dominated convergence theorem,
1im E A" = lim f AM(w)ap(w) = J 181 (yap(w) = pla=1) .
e mre 40 9]

+ +
Finally, if P(0<A<1) # 0 then P(A% > A"™71) >0 ana E A" > & A"

for oaci positive integer m . a

As an example to show that measure-theoretic problems can arise, an
example 1s now given in which H(Xl\ K) is not measurable, and hence is not

a randomn variable.
Let X =2, the real numbers, let K = [0,1], and let U be

Lebesgue measure on ?é. Let I be a nonmeasurable subset of [0,1].



For a construction of E see Royden [6] p. 63. The random set X is

defined in terms of a random point w selected from [0,1] with uniform

measure. We set

[0,1] if we E
X:
[1,2] if w ¢ E

It is clear that the value of X will always be a measurable subset
.cﬁTGE, and that p(X) dis identically 1 so that u{X) is a (degenerate)

random variable. However, H(X#\K) 1is not measurable because

1 if w e E
X OXK) =

0 if w ¢ E
is the indicator function of the nonmeasurable set E. This is presented

here to highlight the measurability aspect referred to earlier and naturally

this situation is not expected to occur in applications.



2. FORMULAS FOR THE MCOMENTS IN THE CASE OF N I1.I.D. SETS

Using the method of Robbins [5] the moments of A = p(xVYK)/u(K),
where K is a fixed set and X a random set in Rn, 4 1is Lebesgue

measure, and O < U(K) < o, are given by

(2.1) E A" = [ux)™ ijPbcl,...,xmeX) dx ...0x .

To avoid measure~theoretic pathologies, we assume all random quantities
we write are random variables. This will be guaranteed, for example,

if we work in the framework of coverage spaces, A gever»ge space,

defined by Ailam in [1], is a triple @,B, M) formed by two probability
spaces @ = (%, S, P) and B = (’y, T, Q) together with a measurable

set Me %% x ? in their product probability space. A random
measurable subset My of % is determined by a random point

y € ‘y via the set M by taking My = {x e¥: (x,y) e M}. A& is called
the coverable space, and 6 is called the space of experiments. A concrete
illustration that is Instructive in viewing this concept of a coverage space

is given in the next section.

The integrand P(xl, ""Xme X) is difficult to evaluate for general X.

However, in the case X = U. X where X

i=1 71 SEREEES

N are independently

and identically distributed sets, the integrand may be expressed in terms

of x .,xm and .Xl alone as follows.

v



Theorem 2:

m
k N
(2.2)  Plx,,...,x €X) =1+ ¥ (~1) ¥ [P(xj e %y #%,)]
o m k=1 1<) <+ < <d <m 1 K
where X = UN X. ,and X ,...,X are independent and identically
i=1 "i? 1 N

distributed random sets.

From this we immediately obtain a useful formula for the moments.

Corollary:

o
k m -k N

(2.3) EA" =1+ kZl(,-l) (k) [u(x)] [P(xy,...0x ¢ X)) ax;...dx,

Thu. to find the mﬁh moment of A , we need only calculate

N
Lck IP(xl,-..,xkaﬁXl)] dx, .. .dx

for k=1,2,...,m . Moreover, after finding E A" in this fashion,

+
we can calculate E A" 1 by doing just one more integral, namely

N
[P(xl,...,xm+ldxl)] dxl. . .dxm+l .

J Km+l

Proof of Theorem 2: Let IY denote the indicator function of the set

Y and let Y° denote the complement of Y . Then
P(xl,...,};m £ ﬁ) =R IX(xl) - Ix(xm) . Since X = U?=l Xi . we have

IX(XJ) =1 - igl IXC(XJ) .  Thus
i

( m N
P(x,,...,x €X) = E T {1- 1T I (x)}.
1 N 1 =1 x‘i::j



Expanding the first precduct, we get

m k N
B{1+ § (-1) ) nfr x ). 1 & )] :
K21 1< <o re<d m =1 | X 1 X

Taking expectation inside a finite sum and using independence, we get

m k N
1+ ¥ (-1) ¥ I E [? Jxe )T x .
k=1 1§;l<--n<jk5p i=1 X. Jl : Xi Jk

Theorem 2 now follows from the fact that each Xi has the same distribu-

tion as Xl and that

EI c(x. ) oo I (x, ) =Plx, ,...,x, ¢Xl) . a}

J J J d
Xl 1 Xl k 1 k



3. SPECIAL CASE: ARCS OF RANDOM SIZES ON A CIRCLE

The circle has held a fascination for a number of authors in
connection with either covering the circumference with random arcs, or
covering a region with random circles. There is an interesting
connection between the two problems which is explored hére.

Let K denote the unit circle. Let X arcs-‘Xl,...,XN be
placed on X , with.IXi centered gt Ci radians, an@ of lengtﬁ. Li .
We assume Cl""’CN B Ll,...,LN are Independent random variables,
with each ci uniformly distributed on [0,27) and each Li distrib-
uted with a density h on [0,») .. Let A denote thé proportion of
K covered by X = U?:l Xi . We wish to find the moments of A , and
hence P (X covers K) .

This problem is motivated by the problem of covering a plane region
with random unit discs. Obser%e that if the region is covered, then
each disc whose closure is interior to .the region must have its boundary
covered by other discs. Let K denote a fixed unit circle. Place N
unit discs with centers uniformly distributed over the digc of radius

2 concentric with K . Note each disc determines a random arc of over~

lap on K (see Figure 3.1). It can be seen that these arcs have the

|_I

distribution mentioned in the first paragraph, with hﬁ(ﬂ,) = 5 sin £ IIO ﬂ(z).
2

The probability that the N discs cover K is P(a=1] .

We may place this problem within the framework of coverage spaces
as follows. Let :j be the surface of the unit sphere in 3 dimensions
barametrized by latitude and longitude so that

@j = {(6,¢): 6 e [0,71], ¢ e [0,2m)}. Let M= {(x,0,4) € K xy:

x € [¢,6+¢] mod 2n}. Then, as outlined in section 2, a point



Figure Z.1

Each random circle Ci determines a random arc Xi on the fixed circle K.

10



(6,0) € 21 determines a subset M(6,¢)<: K. 1In this case, M(6,¢)
is the arc starting at ¢ and extending counterclockwise with
length ©. If we place uniform measure on ?y, a straightforward
calculation shows that the resulting distribution of arc length is
hg. TFigure 3.2 may help one visualize the situation.
First we calculate the moments for arbitrary demsity h{Q) . We

will use Formula (2.3) as

m
S B =14 ] (DF () (m e

k=1 k

where

(3.2) b, = [P(xl,...,xka'xl)]N dx . ..dx .

R

Note that the integrand above is invariant under permutations of

Cxl,...,xk) and that

‘ ‘ N
Lk—,l [P(xl,. .. ,xk;gxl)] ax, .. .'dxk_._l

is independent of the value of x, by uniformity of Ck . Thus we
may set X = Q0 and integrate over the ordered variables

0 f_xl < eee f-xkgl E~2ﬂ to get

(3.3) B = rle)t [ [PCx) s een_ 150 ¢X 0N ax .onax
Xyt B

Next, transform to O) =Xy 5 Oy T Xy=Xpseees0) 0 TX G - X 5

ak = 21 - xk—l = 27 - Z?;i ai . Note that

11



Figure 3.2

Y K
Space of Experiments Coverable Space
(surface of sphere) (circumference of circle)

The random point (6,4) € ¥ determines the random arc

M 5
9,¢CK
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k .
(3.4) P(xl,...,xk_l,O ¢Xl) = izl P(Xl is between 0 and ai)

again because Xl has uniformly distributed center. The Jaccbian of

the transformation .(xl""’xkal) > (al, ) is 1 so (3.3)

]

becomes

N
(3.5) b, = (2m) (x-1)! JR [ 21 PX , between 0 and ai)] da, .- dakpl

k~1

where R = {(al,...,uk_l): all a; >0 and Z NN f‘QW} and

o = o1 -'zi=l oy - Next we calculate P(Xl between 0 and a? for

(a-Ll)+

(3.6) P(Xl between 0 and @) = E P(Xl between 0 and QlLl) =K -

where (;)+'= max(z,Q) . L, has density h , and we integrate by

parts to obtain

(¢ s

. 1
(a-2)n(g)ag = EE’I H(R)de

(3.7) P(X between 0 and o) = l-f
21 0

0

where H(L) = Ig h(t)dt is the cumulative distribution function of L .

Using (3.7) in (3.5)

K (% N
(3.8) b, = (2m)(k-1)! I [g%- ¥ J H(2) d%] do, . ..oy o
R i=1 ‘o0

For: completeness, we put (3.8) into (3.1) to obtain

k . N
G9) B w1 |G D en™* L[en ! EIH“’“] oy ety -

i=1

13



sin %

Now we specialize to the case h.o(Q,) =

> I[O,ﬂ](ﬂ,) so that
(
l-c2c>s 2 Oig‘f_"
H(L) = W
[}
L 1 L>T
and
o =-sin o
& - o f&ﬂ
J H(g)dL = j
o ° o _ 1
or ~ L e
\

These different forms on [0,7] and (m,2n] complicate matters, but
difficulties may bé overcome by breaking the region of integration R
up into subregions where some (at most one!) Oy is greater than w ,
and where all oci are smaller than m . Using thié and symmetry

considerations, (3.8) becames

_ ey 1, kO Cx
. (3.10) bk = (2m)(k-1)! * &k | 'E—TT--F*'W-iz (o ~sin ocil do....do
‘Rﬂ{al>7r}

P

Lk " N
+ (2m) (k-1)? [m; _Z (oci«51n oci) doy...doy o .

i=1

‘RN{all ocjiﬂ}

k
Recall ) @, =27, so (3.10) simplifies to
i=1 :

1k



T % 3 € .
= ] =3 e .
(3.11) b (2m)k! {h Ll et e 122 sin (xi] da ...doy o
R ﬂ{al>n}
1 1 k N
+ (2m) (k-1)! [E'-'—F izl sin a%} dul"”dak—l .
RN{all o <m}
For kX =1, we may use (3.2) directly to obtain
3 N
(3.12) b, = 2nm '(H’)

For k¥ =2 , we use (3.11) and the fact that o, and o, =2"-a,

cannot both be less than T to obtain

2n N

o
— .1 1 .
b, = L {h YT I 31n(2ﬁ—al)] dal .
’IT

Change variables and simplify to obtain

" 3 1 N
(3.13) b, = L [E-n T (ocl + sin al)] do,
0

1

This may easily be evaluated numerically for any particular N .

The first two moments of A are thus (using (3.1), (3.12) and

(3.13))
3 N
(3.14) EA=1 - (1;) s
N w N
(3.15) EBA®=1-2:@) +T [%-El;(a + sin oz)] 60
. _

15



The third moment is more of a challenge. From (3.11)

2m 2n—ml N al N | N
(3.16) b3 = 127 gl ek (sin a, - 51n(ul+u2)é} dat,, dal
™ 0
”“ll 9N
+ b [5-— = (31n ql + sin a, = 51n(al+a2)) da2 dal .
0 W—al

For ease of numerical integration, we change variables and combine

integrals:

(T (O

1 o N
= S R S .

(3.17) b3 = Lr [3 [h el e (sin o, +~51n(al—a2)i}

0“0 '

Pl 1 N

+ 13- E;'(sin a, + sina, + sin(al—ae)i] do, do .

From (3.1)
(3.18) EAd=1-=b +-3-1p - 21

2 3

Some values of b b EA, EA", EA’ and variance (A) are

1> P2 P3o
tabulated in Table 3.1. Recall from theorem 1 that E A, E A2, and

E A3 are upper bounds for the probabilitv of coverage.

16



O =1 0NV W N =B

[AC I LS T ol
Ui O v O

o N W

.084
.020
L0047

22.
13.
.89
.78
.96
.86
.19
LTT
.51
.3
.052
.0092
.0017

I RN\ B~

67
25

111,
52.
25.
12,

HoNow o

Table 3.1

=W

n =2~ o O

.71
.43
.045
. 0060

.00093
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EA E A% E &> Var {(4)
.250 LOTh .026 .0118
438 211 111 .0193
.578 .356 .232 .0218
.684 .188 .361 .0211
.763 .600 .486 .0186
.822 .691 .592 L0154
.867 .763 .681 .0123
.900 .819 .T54 .0096
.925 .863 .811 .0073
.9kl .896 .855 .0055
987 Lg75  .96%  .oon1
.9968 .9939 .991 .00022
.99925 9985 .9979 .0000kk



b, COVERAGE PROBABILITIES FOR THE CIRCLE: NUMERICAL RESULTS

Consider again the problem of Section 3. Let F denote the
cumulative distribution function of the arc lengths, and let P(n,F)
denote the probability that n random arcs, with uwniformly distributed
centers, cover the unit circle. In this section, numeriecal values for
P(n,F) are calculated for five distributions on [0,7] , which, like
the sine distribution of Section 3, are symmetric about w/2 .

The distributions studied are as follows:

(1) F, , concentrated at /2 .

(2) F, , with density §3§—&-1[0 71(%) + Recall that upper bounds on
. 9
P(n,Fz) were found in Section 3.

(3) F, , the uniform distribution on [0,m] .

3
. 1/4
(L) (g}ﬂ R 0< &< m/2
F(2) =
T 1/h
= (75;9 , T2 << T,

This was chosen as an intermediary between F and ¥

3 5°
(5) F5 » Dlacing mass 1/2 at O and at T .

Fl through F5 are graphed in Figure 4.1.

Exact values of P(n,F) were obtained for Fl and F5 . Computer

simulations gave estimates for F2 A~ F3 and Fh 5

1]
P(n,F;) 1is found using Stevens' formula[j] which states that the

probability of covering a circle with n randomly placed arcs of fixed
size a is
[2m/a]

, S .
(4.1) jZO (-1)° () (1 - %;ﬁ

1

]

18
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where [t] denotes the greatest integer contained in t . Thus
b, - 1 - n(3yn-1 n,,lyn-1 n,,1ln-1
(k.2) P(n,F;) =1 - n(f) + ()3 - (3)(1;) s

P(n,FS) is found by conditioning on KX , the random number of arcs of
size m actually placed, and using (4.1). Since X has the binomial

distribution @(n,%) we have

n
P(n,Fs) = E P(_n,FSIK) = 3 (;) SR - k(%)k-l) .

k=1
To simplify this, note that
n n
ny,iyk=1 _ 53yn ny,1\k,.2\n-k _2n ,3\n
L@ 20" 1 xQEHE -G,

using the formula for binomial expectation. Thus
(4.3) (n,FS) 1-2 3 (Eﬁ .

Monte Carlo results were done on Stanford's IEM 370/168 computer.
For each distribution, 10,000 simulations were performed in which
random arcs were placed sequentially until_either the circle was
covered or 50 arcs were placed. The usual unbiased estimate for pro-
bability of success in Bernouilli trials was used. Numerical values of
P(n,Fi) are tabulated in Table 4.1 and graphed in Figure 4.2, Note that
the coverage probabilities vary considerably among our distributions, even
holding number of arcs and expected arc length constant. For example,
with 6 arcs, probability of coverage ranges from .03 to .27; and with 10

arcs it ranges from .34 to .62.

20



Table L.1. Coverage probabilities for n random arcs on the circle.

% + + t *
n P(n,Fl) P(n,F2) P(nsFB) P(n,F)) ,.P(n,FS)
1 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00
3 0.00 0.001 0.004 0.02 0.03
L 0.00 0.01 0.02 0.06 0.09
5 0.004 0.03 0.05 0.12 0.18
6 0.03 - 0.07 0.11 o 0.21 0.27
7 0.07 0.13 0.18 0.29 0.37
8 0.15 0.21 0.26 0.38 0.46
9 0.24 0.30 0.35 0.46 0.55
10 0.3k 0.39 0.43 0.54 0.62
11 0.43 0.47 0.52 0.61 0.69
12 0.53 0.56 0.59 0.68 0.75
13 0.61 0.63 0.66 0.73 0.79
1b 0.68 0.70 0.72 0.78 0.83
15 0.7k 0.75 ‘ 0.77 0.82 0.87
16 0.79 0.80 0.81 0.86 0.89
17 0.83 0.8k 0.85 0.88 0.91
18 0.87 0.87 0.88 0.91 0.93
19 0.89 0.90 0.90 0.93 0.95
20 0.92 0.92 0.92 0.9% 0.96
21 0.93 0.94 0.94 0.95 0.97
22 0.95 0.95 0.95 0.96 0.97
23 0.96 0.96 0.96 | 0.97 0.98
2l 0.97 0.97 0.97 0.97 0.98
25 0.97 0.98 0.98 0.98 0.99
* exact

+ simulated

21
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5. COVERAGE PROBABILITIES FOR THE CIRCLE AND PEAKEDNESS OF ARC LENGTH
DISTRIBUTION

The valuesin Table 4.1 and Figure 4.2 suggest that
P(n,F;) < P(n,F,) < =°e E_P(n,FS) for each n . From Figure 4.1 we can
see that the Fi are in order of decreasing peakedness at their common
expectation 7/2 . We say F 1is more peaked about « than G is
about B8 if YV F and 2~ G imply P(|¥-a]| > t) < P(|2-8] > t) for
every t > 0 . This definition of peskedness is due to Birmbaum [2]1.
This suggests a conjecture, namely that among cumuletive distribu-
tion functions on [0,27] having fixed expectation e , the less peaked

F is about e , the greater P(n,F) will be for each n . That is,

one achiefés greater probability of coverage if one choosés a distri-
bution of arc length that is spread out rather than more concentrated
near its expectation.

So far the conjecture is supported by numerical evidence for five
distributions, each with expectation m/2 . Next we study a class of
distributions that lends further support to the conjecture and enables
us to prove that P(n,Fl) < P(n,FS) .

Let Fe a denote the distribution function of arc length L

b
2

where

o
I

probability

e

1=
a

so that e = E L . For this class of distributions, P(n,F) may be

calculated exactly as the following lemma shows.

23



Lemma.:
[2n/a] . .
e\n Jm ejn-3 e re ejqd-1
= - - =)+ = = el 5
(5.1) P(n,Fe’a) 1-@@-2) 321 (-1) (.j)[l —izﬂ] ~— -3
Proof: Conditioning on K , the number of arcs of size a placed,

noting that X '\a@ (n,i—) , and using Stevens' result, we have

P(n,Fe a)

2

E P(n,F alK)

0 onek,. ek L2E/el ik ja, k-1
L oera -t T coltha - e

1}

Separating off the J = 0 term and rearranging summations, we obtain

[on/a] . . n .
P(n,F, ) =1~ (1-9)"+ jzl (1) (142t kz_l(?)(;)[gcbg;%-)]‘ku-{})n‘k.

Observing that the inner sum is

[l Si]n E(X) where X~ @ M
ol 3 n, L %%

and using the fact that X v B (n,p) implies E(?) = pJ(g) completes

the proof. a

We will be interested in subclasses of distributions with expecta-
tion e that are totally ordered by peakedness at e . The following

proposition exhibits some of these.

Proposition: Let e € (O,ZW) . Then the class ;f; = {Fe a: e<a<2e}
X B

is totally ordered by peakedness at e . That is, e < a <b < 2e
implies ¥ is more peaked at e than is F 5
e,a e,b

2k



Proof: Let Y Fe and Z v Fe where e < acx b<2 . A

)

picture will help one visualize the situation.

8

A
1 = o
i i
i |
! |
) J
R } $
b ’
e ¥1)
1 -3
ot = =
e a b

We must show P(lY-ei z_t) f_P(]Z-ei 2.t) for all + > 0 . "Consider

three cases:

i) if t <b-e, then P(|Y-e| >+t) <1 = P(|z-e| > t),

ii) if b-e <t <e, then P(|Y¥-e| > t)

1 -

b

TS1l-frrllze] 2 1)
kd

iii) if t > e, then P(|Y-e| > t) =0 = P(|z-e] > ). ' o

Theorem 3: For each n , P(n,FTT/2 a) is monotone increasing for
b

a € [w/2,m] . Thus the conjecture holds in ;ﬁﬂ/z .

Proof of Theorem 3: P(ngFﬂ/2 a) assumes different forms depending upon
9

whether a e [w/2,21/3] or a e [2n/3,m] . The proof given here is for
a € [2n/3,1] and is analogous (but more complicated) in the other case.
We may assume n > 3, for if n < 3 then P(n,F ) = 0 when-

—_ 'IT/2:a '

ever a < W . Using the lemma,

- _ oyn _mn 3yn-1 _ gon(n-1) 7
(5.2) P(n’FW/E,a) =1-0- 2a) T 2a (h) * e (a - 1)
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for a e [2n/3,m1] . If we set t = w/2a , we need only show that

n(n-1)

£Fe) =1 - (1-t)" = nt(fj’—)n—l + o t(2t - 1)

is monotone decreasing for t € [%3 %J . To see this, first observe

that

£(8) = nla -1 - (1-+)"?1 > 0

in this interval. Hence f'(t) is monotone increasing there.
I will now show that 1 3, f'(¢) = f'(n-) < 0 . Observe
that

where we define

glx) = (P* + x - (D
Observe g(2) =0, g(3) =~ T - For x>3,
1 1 3 3 3 =
g'(x) = (E)xlog +1- (-é-)xlog 521~ ('é')3log %: -.3T<0.

This implies f'(t) < 0 , forcing £(t) to be monotone decreasing for
13
tE[g,E] 5

The proof for a € [w/2,27/3] uses

Po,F ) =1 - (1-70% - 22 @™+ I Oy 1) - 2 (A _3)?

m/25a 2l Py
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and starts by observing that the corresponding third derivative is
always non-positive. There is no trouble at the boundary a = 2w/3

. . D
because P(n’Fn/2,a) is continuous there.

P(n’Fﬂ/Z,a) is plotted in Figures 5.1 and 5.2, clearly showing its
monotone property. In figure 5.2 we see an interesting slope dis-
continuity a£ arc size 7. This is due to the fact that two arcs of
size less than T cannot possibly cover the circle, whereas two arcs

of size greater than ® can cover the circle with positive probability.

Corollary: P(n,Fl) < P(n,Fs) whenever n > 3 .

Proof: Observe that Fl = and F

Fn/2,ﬂ/2 5 = Fﬂ/z’" . - Hence

P(n,Fl) f_P(n,Fs) follows immediately from Theorem 3. Strict inequality

when n > 3 follows from f'(t) >0 for t e C%—,%ﬂ in the proof of

Theorem 3 . 0

Theorem 4: Fix e € (0,m) . Then P(.n,Fe a) is monotone increasing
b

for a € [max(e,n),2n] for each n.

Proof of Theorem 4: a > T , so by the lemma,

(5.3) Pag, ) =1 Q-8 - B oyt

2

Setting t = §-, we need only show

= n e \n-1
f{t) =1 - (L=-%t) - m:(l--21T
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is monotone decreasing for % € [5%3 minég, 1)]. " But
' T

£ (t) = n[(l_t)n‘l - (1-%—)“‘1] <0

in that iﬁterval, completing the proof.

Corollary: Let g—< e < . Then the conjecture holds in the class

of distributions

: < a <
{Fe,a' T <a< 2}

Proof: This is an immediate consequence of theorem 4 and the propo-

sition of this section.
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